Neurostimulants after a Brain Injury: What do we know?

Kathleen R. Bell, M.D. April 14, 2010

- Thank you to our federal sponsor, the National Institute on Disability and Rehabilitation Research (Department of Education)
- OT Department for their beautiful classroom

Effects of Traumatic Brain Injury – problems with regulation

- TOO MUCH
- Irritability
- Impulsivity
- Mood ups/downs
- Mania
- Psychosis
- Aggression
- Increased sexual behavior

NOT ENOUGH

- Apathy
- Akinetic mutism
- Poor memory search
- Poor flexibility in thinking
- Problems with staying on task
- Memory impairment

The Major Sections of the Brain

Medial Frontal Cortex

Neurotransmitters

- Dopamine
- Norepinephrine (noradrenaline)
 - Acetylcholine

Speed, Attention and Memory

Neurostimulants can affect:

- How fast you think
- How well you can pay attention (how <u>really</u> awake you are)
- How much/well you can remember

Attention

Figure AB-24: Reticular Activating System

- Neural network
 - Ascending reticular activating system (brain stem) working *from the bottom-up*
 - Global attention
 - Prefrontal, parietal, and limbic cortices working from the top-down
 - Attention specific to context, motivation, significance, and conscious volition

- Lesions of this area result in
 - Amotivational apathetic state
 - Less talking and gesturing
 - Decreased curiosity
 - Less vocal inflection and facial expression
 - Reduced social interest, diminished affection
 - Reduced initiation and poor maintenance of activities

- Lesion in superior medial frontal cortex slowed response time
- Lesion in the Dorsolateral Prefrontal Cortex no problems initiating but lots of errors (unable to switch sets)
- Lesion in the caudate nucleus Might have both slowed processing time and perseverative errors

Memory

- Temporal lobe or diencephalon (hippocampus) – actual storage of memory
- Frontal lobe damage
 - Impaired recall that depends on self-initiated cues, organization, search selection, and verification of stored information

Neurostimulants

amphetamine Norepinephrine (TCAs) methylphenidate, dextroamphetamine amantadine L-dopa/carbidopa bromocriptine pergolide physostigmine donepezil selegiline apomorphine caffeine phenylpropanolamine **Naltrexone** atomoxetine

Methylphenidate (Ritalin)

- Dopaminergic agent
 - Small studies that indicate that MPH improves processing speed, and levels of attention (which may improve memory)
 - In rats, improves dopamine transmission between nerve cells as well
 - Probably true for amphetamines as well

Rivastigmine

- Cholinesterase inhibitor stops the breakdown of acetylcholine in the brain
- Seems to have <u>promising</u> results in patients with specific memory impairments
- (donepezil Aricept, tacrine Cognex, memantine – Namenda, galantamine – Razadyne)

Other Dopaminergic Drugs

amantadine L-dopa/carbidopa

bromocriptine

How to decide whether to prescribe or use?

- Helps to have a specific behavior in mind that you want to improve
 - Is it speed, alertness, or memory that is the issue

How to decide whether to prescribe or use?

- Are there any reasons NOT to take the drug?
 - Heart problems
 - Other medications that might interact
 - History of addiction
 - Irritability

How to decide whether to prescribe or use?

• When to take the drugs?

– No one really knows

IF you and your doctor decide to try a neurostimulant:

- Be your own research project
 - Figure out what your desired results are
 - Begin a dose of the drug
 - Observe and keep records
 - May need to increase the dose of the drug
 - May need to go back off the drug to see if it was really working or not

Questions?